Introduction of Fibre-Reinforced Polymers − Polymers and Composites: Concepts, Properties and Processes

19 Oct.,2022

 

FRP Fittings

Ultimately, in order for composites to truly be considered a viable alternative, they must be structurally and economically feasible. Numerous studies regarding the structural feasibility of composite materials are widely available in literature [ 6 ]. However, limited studies are available on the economic and environmental feasibility of these materials from the perspective of a life cycle approach, since short term data is available or only economic costs are considered in the comparison. Additionally, the long term affects of using composite materials needs to be determined. The byproducts of the production, the sustainability of the constituent materials, and the potential to recycle composite materials needs to be assessed in order to determine of composite materials can be part of a sustainable environment. Therefore in this chapter describe the physicochemical properties of polymers and composites more used in Civil Engineering. The theme will be addressed in a simple and basic for better understanding.

Composite materials have developed greatly since they were first introduced. However, before composite materials can be used as an alternative to conventional materials as part of a sustainable environment a number of needs remain.

In the case of FRP composites, environmental concerns appear to be a barrier to its feasibility as a sustainable material especially when considering fossil fuel depletion, air pollution, smog, and acidification associated with its production. In addition, the ability to recycle FRP composites is limited and, unlike steel and timber, structural components cannot be reused to perform a similar function in another structure. However, evaluating the environmental impact of FRP composites in infrastructure applications, specifically through life cycle analysis, may reveal direct and indirect benefits that are more competitive than conventional materials.

When considering only energy and material resources it appears, on the surface, the argument for FRP composites in a sustainable built environment is questionable. However, such a conclusion needs to be evaluated in terms of potential advantages present in use of FRP composites related to considerations such as:

The applicability of Fiber Reinforced Polymer (FRP) reinforcements to concrete structures as a substitute for steel bars or prestressing tendons has been actively studied in numerous research laboratories and professional organizations around the world. FRP reinforcements offer a number of advantages such as corrosion resistance, non-magnetic properties, high tensile strength, lightweight and ease of handling. However, they generally have a linear elastic response in tension up to failure (described as a brittle failure) and a relatively poor transverse or shear resistance. They also have poor resistance to fire and when exposed to high temperatures. They loose significant strength upon bending, and they are sensitive to stress-rupture effects. Moreover, their cost, whether considered per unit weight or on the basis of force carrying capacity, is high in comparison to conventional steel reinforcing bars or prestressing tendons. From a structural engineering viewpoint, the most serious problems with FRP reinforcements are the lack of plastic behavior and the very low shear strength in the transverse direction. Such characteristics may lead to premature tendon rupture, particularly when combined effects are present, such as at shear-cracking planes in reinforced concrete beams where dowel action exists. The dowel action reduces residual tensile and shear resistance in the tendon. Solutions and limitations of use have been offered and continuous improvements are expected in the future. The unit cost of FRP reinforcements is expected to decrease significantly with increased market share and demand. However, even today, there are applications where FRP reinforcements are cost effective and justifiable. Such cases include the use of bonded FRP sheets or plates in repair and strengthening of concrete structures, and the use of FRP meshes or textiles or fabrics in thin cement products. The cost of repair and rehabilitation of a structure is always, in relative terms, substantially higher than the cost of the initial structure. Repair generally requires a relatively small volume of repair materials but a relatively high commitment in labor. Moreover the cost of labor in developed countries is so high that the cost of material becomes secondary. Thus the highest the performance and durability of the repair material is, the more cost-effective is the repair. This implies that material cost is not really an issue in repair and that the fact that FRP repair materials are costly is not a constraining drawback [ 5 ].

The fibre reinforced polymer composites (FRPs) are increasingly being considered as an enhancement to and/or substitute for infrastructure components or systems that are constructed of traditional civil engineering materials, namely concrete and steel. FRP composites are lightweight, no-corrosive, exhibit high specific strength and specific stiffness, are easily constructed, and can be tailored to satisfy performance requirements. Due to these advantageous characteristics, FRP composites have been included in new construction and rehabilitation of structures through its use as reinforcement in concrete, bridge decks, modular structures, formwork, and external reinforcement for strengthening and seismic upgrade [ 4 ].

Fibre reinforced polymer (FRP) are composites used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildings. The usage of FRP composites continues to grow at an impressive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites [ 3 ].

Composite materials are engineered or naturally occurring materials made from two or more constituent materials with significantly different physical or chemical properties which remain separate and distinct within the finished structure. Most composites have strong, stiff fibres in a matrix which is weaker and less stiff. The objective is usually to make a component which is strong and stiff, often with a low density. Commercial material commonly has glass or carbon fibres in matrices based on thermosetting polymers, such as epoxy or polyester resins. Sometimes, thermoplastic polymers may be preferred, since they are moldable after initial production. There are further classes of composite in which the matrix is a metal or a ceramic. For the most part, these are still in a developmental stage, with problems of high manufacturing costs yet to be overcome [ 1 ]. Furthermore, in these composites the reasons for adding the fibres (or, in some cases, particles) are often rather complex; for example, improvements may be sought in creep, wear, fracture toughness, thermal stability, etc [ 2 ].

Fibre-reinforced polymer (FRP) , also Fibre-reinforced plastic , is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, or aramid, although other fibres such as paper or wood or asbestos have been sometimes used. The polymer is usually an epoxy, vinylester or polyester thermosetting plastic, and phenol formaldehyde resins are still in use. FRPs are commonly used in the aerospace, automotive, marine, and construction industries.

Advertisement

2. Manufactured process and basic concepts

The synthetic polymers are generally manufactured by polycondensation, polymerization or polyaddition. The polymers combined with various agents to enhance or in any way alter the material properties of polymers the result is referred to as a plastic. The Composite plastics can be of homogeneous or heterogeneous mix. Composite plastics refer to those types of plastics that result from bonding two or more homogeneous materials with different material properties to derive a final product with certain desired material and mechanical properties. The Fibre reinforced plastics (or fiber reinforced polymers) are a category of composite plastics that specifically use fibre materials (not mix with polymer) to mechanically enhance the strength and elasticity of plastics. The original plastic material without fibre reinforcement is known as the matrix. The matrix is a tough but relatively weak plastic that is reinforced by stronger stiffer reinforcing filaments or fibres. The extent that strength and elasticity are enhanced in a fibre reinforced plastic depends on the mechanical properties of the fibre and matrix, their volume relative to one another, and the fibre length and orientation within the matrix. Reinforcement of the matrix occurs by definition when the FRP material exhibits increased strength or elasticity relative to the strength and elasticity of the matrix alone.

Polymers are different from other construction materials like ceramics and metals, because of their macromolecular nature. The covalently bonded, long chain structure makes them macromolecules and determines, via the weight averaged molecular weight, Mw, their processability, like spin-, blow-, deep draw-, generally melt-formability. The number averaged molecular weight, Mn, determines the mechanical strength, and high molecular weights are beneficial for properties like strain-to-break, impact resistance, wear, etc. Thus, natural limits are met, since too high molecular weights yield too high shear and elongational viscosities that make polymers inprocessable. Prime examples are the very useful poly-tetra-fluor-ethylenes, PTFE’s, and ultrahigh-molecular-weight-poly-ethylenes, UHMWPE’s, and not only garbage bags are made of polyethylene, PE, but also high-performance fibers that are even used for bullet proof vests (alternatively made from, also inprocessable in the melt, rigid aromatic polyamides). The resulting mechanical properties of these high performance fibers, with moduli of 150 GPa and strengths of up to 4 GPa, represent the optimal use of what the potential of the molecular structure of polymers yields, combined with their low density. Thinking about polymers, it becomes clear why living nature used the polymeric concept to build its structures, and not only in high strength applications like wood, silk or spider-webs [7].

2.1. Polymers

The linking of small molecules (monomers) to make larger molecules is a polymer. Polymerization requires that each small molecule have at least two reaction points or functional groups. There are two distinct major types of polymerization processes, condensation polymerization, in which the chain growth is accompanied by elimination of small molecules such as H2O or CH3OH, and addition polymerization, in which the polymer is formed without the loss of other materials. There are many variants and subclasses of polymerization reactions.

The polymer chains can be classified in linear polymer chain, branched polymer chain, and cross-linked polymer chain. The structure of the repeating unit is the difunctional monomeric unit, or “mer.” In the presence of catalysts or initiators, the monomer yields a polymer by the joining together of n-mers. If n is a small number, 2–10, the products are dimers, trimers, tetramers, or oligomers, and the materials are usually gases, liquids, oils, or brittle solids. In most solid polymers, n has values ranging from a few score to several hundred thousand, and the corresponding molecular weights range from a few thousand to several million. The end groups of this example of addition polymers are shown to be fragments of the initiator. If only one monomer is polymerized, the product is called a homopolymer. The polymerization of a mixture of two monomers of suitable reactivity leads to the formation of a copolymer, a polymer in which the two types of mer units have entered the chain in a more or less random fashion. If chains of one homopolymer are chemically joined to chains of another, the product is called a block or graft copolymer.

Isotactic and syndiotactic (stereoregular) polymers are formed in the presence of complex catalysts, or by changing polymerization conditions, for example, by lowering the temperature. The groups attached to the chain in a stereoregular polymer are in a spatially ordered arrangement. The regular structures of the isotactic and syndiotactic forms make them often capable of crystallization. The crystalline melting points of isotactic polymers are often substantially higher than the softening points of the atactic product.

The spatially oriented polymers can be classified in atactic (random; dlldl or lddld, and so on), syndiotactic (alternating; dldl, and so on), and isotactic (right- or left-handed; dddd, or llll, and so on). For illustration, the heavily marked bonds are assumed to project up from the paper, and the dotted bonds down. Thus in a fully syndiotactic polymer, asymmetric carbons alternate in their left- or right-handedness (alternating d, l configurations), while in an isotactic polymer, successive carbons have the same steric configuration (d or l). Among the several kinds of polymerization catalysis, free-radical initiation has been most thoroughly studied and is most widely employed. Atactic polymers are readily formed by free-radical polymerization, at moderate temperatures, of vinyl and diene monomers and some of their derivatives. Some polymerizations can be initiated by materials, often called ionic catalysts, which contain highly polar reactive sites or complexes. The term heterogeneous catalyst is often applicable to these materials because many of the catalyst systems are insoluble in monomers and other solvents. These polymerizations are usually carried out in solution from which the polymer can be obtained by evaporation of the solvent or by precipitation on the addition of a nonsolvent. A distinguishing feature of complex catalysts is the ability of some representatives of each type to initiate stereoregular polymerization at ordinary temperatures or to cause the formation of polymers which can be crystallized [1, 6].

2.1.1. Polymerization

Polymerization, emulsion polymerization any process in which relatively small molecules, called monomers, combine chemically to produce a very large chainlike or network molecule, called a polymer. The monomer molecules may be all alike, or they may represent two, three, or more different compounds. Usually at least 100 monomer molecules must be combined to make a product that has certain unique physical properties-such as elasticity, high tensile strength, or the ability to form fibres-that differentiate polymers from substances composed of smaller and simpler molecules; often, many thousands of monomer units are incorporated in a single molecule of a polymer. The formation of stable covalent chemical bonds between the monomers sets polymerization apart from other processes, such as crystallization, in which large numbers of molecules aggregate under the influence of weak intermolecular forces.

Two classes of polymerization usually are distinguished. In condensation polymerization, each step of the process is accompanied by formation of a molecule of some simple compound, often water. In addition polymerization, monomers react to form a polymer without the formation of by-products. Addition polymerizations usually are carried out in the presence of catalysts, which in certain cases exert control over structural details that have important effects on the properties of the polymer [8].

Linear polymers, which are composed of chainlike molecules, may be viscous liquids or solids with varying degrees of crystallinity; a number of them can be dissolved in certain liquids, and they soften or melt upon heating. Cross-linked polymers, in which the molecular structure is a network, are thermosetting resins (i.e., they form under the influence of heat but, once formed, do not melt or soften upon reheating) that do not dissolve in solvents. Both linear and cross-linked polymers can be made by either addition or condensation polymerization.

2.1.2. Polycondensation

The polycondensation a process for the production of polymers from bifunctional and polyfunctional compounds (monomers), accompanied by the elimination of low-molecular weight by-products (for example, water, alcohols, and hydrogen halides). A typical example of polycondensation is the synthesis of complex polyester.

The process is called homopolycondensation if the minimum possible number of monomer types for a given case participates, and this number is usually two. If at least one monomer more than the number required for the given reaction participates in polycondensation, the process is called copolycondensation. Polycondensation in which only bifunctional compounds participate leads to the formation of linear macromolecules and is called linear polycondensation. If molecules with three or more functional groups participate in polycondensation, three-dimensional structures are formed and the process is called three-dimensional polycondensation. In cases where the degree of completion of polycondensation and the mean length of the macromolecules are limited by the equilibrium concentration of the reagents and reaction products, the process is called equilibrium (reversible) polycondensation. If the limiting factors are kinetic rather than thermodynamic, the process is called nonequilibrium (irreversible) polycondensation.

Polycondensation is often complicated by side reactions, in which both the original monomers and the polycondensation products (oligomers and polymers) may participate. Such reactions include the reaction of monomer or oligomer with a mono-functional compound (which may be present as an impurity), intramolecular cyclization (ring closure), and degradation of the macromolecules of the resultant polymer. The rate competition of polycondensation and the side reactions determines the molecular weight, yield, and molecular weight distribution of the polycondensation polymer.

Polycondensation is characterized by disappearance of the monomer in the early stages of the process and a sharp increase in molecular weight, in spite of a slight change in the extent of conversion in the region of greater than 95-percent conversion.

A necessary condition for the formation of macro-molecular polymers in linear polycondensation is the equivalence of the initial functional groups that react with one another.

Polycondensation is accomplished by one of three methods:

  1. in a melt, when a mixture of the initial compounds is heated for a long period to 10°-20°C above the melting (softening) point of the resultant polymer;

  2. in solution, when the monomers are present in the same phase in the solute state;

  3. on the phase boundary between two immiscible liquids, in which one of the initial compounds is found in each of the liquid phases (interphase polycondensation).

Polycondensation processes play an important role in nature and technology. Polycondensation or similar reactions are the basis for the biosynthesis of the most important biopolymers-proteins, nucleic acids, and cellulose. Polycondensation is widely used in industry for the production of polyesters (polyethylene terephthalate, polycarbonates, and alkyd resins), polyamides, phenol-formaldehyde resins, urea-formaldehyde resins, and certain silicones [9]. In the period 1965-70, polycondensation acquired great importance in connection with the development of industrial production of a series of new polymers, including heat-resistant polymers (polyarylates, aromatic polyimides, polyphe-nylene oxides, and polysulfones).

2.1.3. Polyaddition

The polyaddition reactions are similar to polycondensation reactions because they are also step reactions, however without splitting off low molecular weight by-products. The reaction is exothermic rather than endothermic and therefore cannot be stopped at will. Typical for polyaddition reaction is that individual atoms, usually H-atoms, wander from one monomer to another as the two monomers combine through a covalent bond. The monomers, as in polycondensation reactions, have to be added in stoichiometric amounts. These reactions do not start spontaneously and they are slow.

Polyaddition does not play a significant role in the production of thermoplastics. It is commonly encountered with cross-linked polymers. Polyurethane, which can be either a thermoplastic or thermosets, is synthesized by the reaction of multi-functional isocyanates with multifunctional amines or alcohol. Thermosetting epoxy resins are formed by polyaddition of epoxides with curing agents, such as amines and acid anhydrides.

In comparing chain reaction polymerization with the other two types of polymerization the following principal differences should be noted: Chain reaction polymerization, or simply called polymerization, is a chain reaction as the name implies. Only individual monomer molecules add to a reactive growing chain end, except for recombination of two radical chain ends or reactions of a reactive chain end with an added modifier molecule. The activation energy for chain initiation is much grater than for the subsequent growth reaction and growth, therefore, occurs very rapidly.

2.2. Composites

Composite is any material made of more than one component. There are a lot of composites around you. Concrete is a composite. It's made of cement, gravel, and sand, and often has steel rods inside to reinforce it. Those shiny balloons you get in the hospital when you're sick are made of a composite, which consists of a polyester sheet and an aluminum foil sheet, made into a sandwich. The polymer composites made from polymers, or from polymers along with other kinds of materials [7]. But specifically the fiber-reinforced composites are materials in which a fiber made of one material is embedded in another material.

2.2.1. Polymer composites

The polymer composites are any of the combinations or compositions that comprise two or more materials as separate phases, at least one of which is a polymer. By combining a polymer with another material, such as glass, carbon, or another polymer, it is often possible to obtain unique combinations or levels of properties. Typical examples of synthetic polymeric composites include glass-, carbon-, or polymer-fiber-reinforced, thermoplastic or thermosetting resins, carbon-reinforced rubber, polymer blends, silica- or mica-reinforced resins, and polymer-bonded or -impregnated concrete or wood. It is also often useful to consider as composites such materials as coatings (pigment-binder combinations) and crystalline polymers (crystallites in a polymer matrix). Typical naturally occurring composites include wood (cellulosic fibers bonded with lignin) and bone (minerals bonded with collagen). On the other hand, polymeric compositions compounded with a plasticizer or very low proportions of pigments or processing aids are not ordinarily considered as composites.

Typically, the goal is to improve strength, stiffness, or toughness, or dimensional stability by embedding particles or fibers in a matrix or binding phase. A second goal is to use inexpensive, readily available fillers to extend a more expensive or scarce resin; this goal is increasingly important as petroleum supplies become costlier and less reliable. Still other applications include the use of some filler such as glass spheres to improve processability, the incorporation of dry-lubricant particles such as molybdenum sulfide to make a self-lubricating bearing, and the use of fillers to reduce permeability.

The most common fiber-reinforced polymer composites are based on glass fibers, cloth, mat, or roving embedded in a matrix of an epoxy or polyester resin. Reinforced thermosetting resins containing boron, polyaramids, and especially carbon fibers confer especially high levels of strength and stiffness. Carbon-fiber composites have a relative stiffness five times that of steel. Because of these excellent properties, many applications are uniquely suited for epoxy and polyester composites, such as components in new jet aircraft, parts for automobiles, boat hulls, rocket motor cases, and chemical reaction vessels.

Although the most dramatic properties are found with reinforced thermosetting resins such as epoxy and polyester resins, significant improvements can be obtained with many reinforced thermoplastic resins as well. Polycarbonates, polyethylene, and polyesters are among the resins available as glass-reinforced composition. The combination of inexpensive, one-step fabrication by injection molding, with improved properties has made it possible for reinforced thermoplastics to replace metals in many applications in appliances, instruments, automobiles, and tools.

In the development of other composite systems, various matrices are possible; for example, polyimide resins are excellent matrices for glass fibers, and give a high- performance composite. Different fibers are of potential interest, including polymers [such as poly(vinyl alcohol)], single-crystal ceramic whiskers (such as sapphire), and various metallic fibers.

Long ago, people living in South and Central America had used natural rubber latex, polyisoprene, to make things like gloves and boots, as well as rubber balls which they used to play games that were a lot like modern basketball. He took two layers of cotton fabric and embedded them in natural rubber, also known as polyisoprene, making a three-layered sandwich like the one you see on your right (Remember, cotton is made up of a natural polymer called cellulose). This made for good raincoats because, while the rubber made it waterproof, the cotton layers made it comfortable to wear, to make a material that has the properties of both its components. In this case, we combine the water-resistance of polyisoprene and the comfort of cotton.

Modern composites are usually made of two components, a fiber and matrix. The fiber is most often glass, but sometimes Kevlar, carbon fiber, or polyethylene. The matrix is usually a thermoset like an epoxy resin, polydicyclopentadiene, or a polyimide. The fiber is embedded in the matrix in order to make the matrix stronger. Fiber-reinforced composites have two things going for them. They are strong and light. They are often stronger than steel, but weigh much less. This means that composites can be used to make automobiles lighter, and thus much more fuel efficient.

A common fiber-reinforced composite is FiberglasTM. Its matrix is made by reacting polyester with carbon-carbon double bonds in its backbone, and styrene. We pour a mix of the styrene and polyester over a mass of glass fibers.

The styrene and the double bonds in the polyester react by free radical vinyl polymerization to form a crosslinked resin. The glass fibers are trapped inside, where they act as a reinforcement. In FiberglasTM the fibers are not lined up in any particular direction. They are just a tangled mass, like you see on the right. But we can make the composite stronger by lining up all the fibers in the same direction. Oriented fibers do some weird things to the composite. When you pull on the composite in the direction of the fibers, the composite is very strong. But if you pull on it at right angles to the fiber direction, it is not very strong at all [8-9]. This is not always bad, because sometimes we only need the composite to be strong in one direction. Sometimes the item you are making will only be under stress in one direction. But sometimes we need strength in more than one direction. So we simply point the fibers in more than one direction. We often do this by using a woven fabric of the fibers to reinforce the composite. The woven fibers give a composite good strength in many directions.

The polymeric matrix holds the fibers together. A loose bundle of fibers would not be of much use. Also, though fibers are strong, they can be brittle. The matrix can absorb energy by deforming under stress. This is to say, the matrix adds toughness to the composite. And finally, while fibers have good tensile strength (that is, they are strong when you pull on them), they usually have awful compressional strength. That is, they buckle when you squash them. The matrix gives compressional strength to the composite.

Not all fibers are the same. Now it may seem strange that glass is used as reinforcement, as glass is really easy to break. But for some reason, when glass is spun into really tiny fibers, it acts very different. Glass fibers are strong, and flexible.

Still, there are stronger fibers out there. This is a good thing, because sometimes glass just isn't strong and tough enough. For some things, like airplane parts, that undergo a lot of stress, you need to break out the fancy fibers. When cost is no object, you can use stronger, but more expensive fibers, like KevlarTM, carbon fiber. Carbon fiber (SpectraTM) is usually stronger than KevlarTM, that is, it can withstand more force without breaking. But KevlarTM tends to be tougher. This means it can absorb more energy without breaking. It can stretch a little to keep from breaking, more so than carbon fiber can. But SpectraTM, which is a kind of polyethylene, is stronger and tougher than both carbon fiber and KevlarTM.

Different jobs call for different matrices. The unsaturated polyester/styrene systems at are one example. They are fine for everyday applications. Chevrolet Corvette bodies are made from composites using unsaturated polyester matrices and glass fibers. But they have some drawbacks. They shrink a good deal when they're cured, they can absorb water very easily, and their impact strength is low.

2.2.2. Biocomposites

For many decades, the residential construction field has used timber as its main source of building material for the frames of modern American homes. The American timber industry produced a record 49.5 billion board feet of lumber in 1999, and another 48.0 billion board feet in 2002. At the same time that lumber production is peaking, the home ownership rate reached a record high of 69.2%, with over 977,000 homes being sold in 2002. Because residential construction accounts for one-third of the total softwood lumber use in the United States, there is an increasing demand for alternate materials. Use of sawdust not only provides an alternative but also increases the use of the by product efficiently. Wood plastic composites (WPC) is a relatively new category of materials that covers a broad range of composite materials utilizing an organic resin binder (matrix) and fillers composed of cellulose materials. The new and rapidly developing biocomposite materials are high technology products, which have one unique advantage – the wood filler can include sawdust and scrap wood products. Consequently, no additional wood resources are needed to manufacture biocomposites. Waste products that would traditraditionally cost money for proper disposal, now become a beneficial resource, allowing recycling to be both profitable and environmentally conscious. The use of biocomposites and WPC has increased rapidly all over the world, with the end users for these composites in the construction, motor vehicle, and furniture industries. One of the primary problems related to the use of biocomposites is the flammability of the two main components (binder and filler). If a flame retardant were added, this would require the adhesion of the fiber and the matrix not to be disturbed by the retardant. The challenge is to develop a composite that will not burn and will maintain its level of mechanical performance. In lieu of organic matrix compounds, inorganic matrices can be utilized to improve the fire resistance. Inorganic-based wood composites are those that consist of a mineral mix as the binder system. Such inorganic binder systems include gypsum and Portland cement, both of which are highly resistant to fire and insects. The main disadvantage with these systems is the maximum amount of sawdust or fibers than can be incorporated is low. One relatively new type of inorganic matrix is potassium aluminosilicate, an environmentally friendly compound made from naturally occurring materials. The Federal Aviation Administration has investigated the feasibility of using this matrix in commercial aircraft due to its ability to resist temperatures of up to 1000 ºC without generating smoke, and its ability to enable carbon composites to withstand temperatures of 800 ºC and maintain 63% of its original flexural strength. Potassium aluminosilicate matrices are compatible with many common building material including clay brick, masonry, concrete, steel, titanium, balsa, oak, pine, and particleboard [10].

2.3. Fiberglass

Fiberglass refers to a group of products made from individual glass fibers combined into a variety of forms. Glass fibers can be divided into two major groups according to their geometry: continuous fibers used in yarns and textiles, and the discontinuous (short) fibers used as batts, blankets, or boards for insulation and filtration. Fiberglass can be formed into yarn much like wool or cotton, and woven into fabric which is sometimes used for draperies. Fiberglass textiles are commonly used as a reinforcement material for molded and laminated plastics. Fiberglass wool, a thick, fluffy material made from discontinuous fibers, is used for thermal insulation and sound absorption. It is commonly found in ship and submarine bulkheads and hulls; automobile engine compartments and body panel liners; in furnaces and air conditioning units; acoustical wall and ceiling panels; and architectural partitions. Fiberglass can be tailored for specific applications such as Type E (electrical), used as electrical insulation tape, textiles and reinforcement; Type C (chemical), which has superior acid resistance, and Type T, for thermal insulation [11].

Though commercial use of glass fiber is relatively recent, artisans created glass strands for decorating goblets and vases during the Renaissance. A French physicist, Rene-Antoine Ferchault de Reaumur, produced textiles decorated with fine glass strands in 1713. Glass wool, a fluffy mass of discontinuous fiber in random lengths, was first produced in Europe in 1900, using a process that involved drawing fibers from rods horizontally to a revolving drum [12].

The basic raw materials for fiberglass products are a variety of natural minerals and manufactured chemicals. The major ingredients are silica sand, limestone, and soda ash. Other ingredients may include calcined alumina, borax, feldspar, nepheline syenite, magnesite, and kaolin clay, among others. Silica sand is used as the glass former, and soda ash and limestone help primarily to lower the melting temperature. Other ingredients are used to improve certain properties, such as borax for chemical resistance. Waste glass, also called cullet, is also used as a raw material. The raw materials must be carefully weighed in exact quantities and thoroughly mixed together (called batching) before being melted into glass.

2.3.1. The manufacturing process

2.3.1.1. Melting

Once the batch is prepared, it is fed into a furnace for melting. The furnace may be heated by electricity, fossil fuel, or a combination of the two. Temperature must be precisely controlled to maintain a smooth, steady flow of glass. The molten glass must be kept at a higher temperature (about 1371 °C) than other types of glass in order to be formed into fiber. Once the glass becomes molten, it is transferred to the forming equipment via a channel (forehearth) located at the end of the furnace [13].

2.3.1.2. Forming into fibers

Several different processes are used to form fibers, depending on the type of fiber. Textile fibers may be formed from molten glass directly from the furnace, or the molten glass may be fed first to a machine that forms glass marbles of about 0.62 inch (1.6 cm) in diameter. These marbles allow the glass to be inspected visually for impurities. In both the direct melt and marble melt process, the glass or glass marbles are fed through electrically heated bushings (also called spinnerets). The bushing is made of platinum or metal alloy, with anywhere from 200 to 3,000 very fine orifices. The molten glass passes through the orifices and comes out as fine filaments [13].

2.3.1.3. Continuous-filament process

A long, continuous fiber can be produced through the continuous-filament process. After the glass flows through the holes in the bushing, multiple strands are caught up on a high-speed winder. The winder revolves at about 3 km a minute, much faster than the rate of flow from the bushings. The tension pulls out the filaments while still molten, forming strands a fraction of the diameter of the openings in the bushing. A chemical binder is applied, which helps keep the fiber from breaking during later processing. The filament is then wound onto tubes. It can now be twisted and plied into yarn [14].

2.3.1.4. Staple-fiber process

An alternative method is the staplefiber process. As the molten glass flows through the bushings, jets of air rapidly cool the filaments. The turbulent bursts of air also break the filaments into lengths of 20-38 cm. These filaments fall through a spray of lubricant onto a revolving drum, where they form a thin web. The web is drawn from the drum and pulled into a continuous strand of loosely assembled fibers [15]. This strand can be processed into yarn by the same processes used for wool and cotton.

2.3.1.5. Chopped fiber

Instead of being formed into yarn, the continuous or long-staple strand may be chopped into short lengths. The strand is mounted on a set of bobbins, called a creel, and pulled through a machine which chops it into short pieces. The chopped fiber is formed into mats to which a binder is added. After curing in an oven, the mat is rolled up. Various weights and thicknesses give products for shingles, built-up roofing, or decorative mats [16].

2.3.1.6. Glass wool

The rotary or spinner process is used to make glass wool. In this process, molten glass from the furnace flows into a cylindrical container having small holes. As the container spins rapidly, horizontal streams of glass flow out of the holes. The molten glass streams are converted into fibers by a downward blast of air, hot gas, or both. The fibers fall onto a conveyor belt, where they interlace with each other in a fleecy mass. This can be used for insulation, or the wool can be sprayed with a binder, compressed into the desired thickness, and cured in an oven. The heat sets the binder, and the resulting product may be a rigid or semi-rigid board, or a flexible bat [15-16].

2.3.1.7. Protective coatings

In addition to binders, other coatings are required for fiberglass products. Lubricants are used to reduce fiber abrasion and are either directly sprayed on the fiber or added into the binder. An anti-static composition is also sometimes sprayed onto the surface of fiberglass insulation mats during the cooling step. Cooling air drawn through the mat causes the anti-static agent to penetrate the entire thickness of the mat. The anti-static agent consists of two ingredients a material that minimizes the generation of static electricity, and a material that serves as a corrosion inhibitor and stabilizer.

Sizing is any coating applied to textile fibers in the forming operation, and may contain one or more components (lubricants, binders, or coupling agents). Coupling agents are used on strands that will be used for reinforcing plastics, to strengthen the bond to the reinforced material. Sometimes a finishing operation is required to remove these coatings, or to add another coating. For plastic reinforcements, sizings may be removed with heat or chemicals and a coupling agent applied. For decorative applications, fabrics must be heat treated to remove sizings and to set the weave. Dye base coatings are then applied before dying or printing [15-16].

2.3.1.8. Forming into shapes

Fiberglass products come in a wide variety of shapes, made using several processes. For example, fiberglass pipe insulation is wound onto rod-like forms called mandrels directly from the forming units, prior to curing. The mold forms, in lengths of 91 cm or less, are then cured in an oven. The cured lengths are then de-molded lengthwise, and sawn into specified dimensions. Facings are applied if required, and the product is packaged for shipment [17].

2.4. Carbon fibre

Carbon-fiber-reinforced polymer or carbon-fiber-reinforced plastic (CFRP or CRP or often simply carbon fiber), is a very strong and light fiber-reinforced polymer which contains carbon fibers. Carbon fibres are created when polyacrylonitrile fibres (PAN), Pitch resins, or Rayon are carbonized (through oxidation and thermal pyrolysis) at high temperatures. Through further processes of graphitizing or stretching the fibres strength or elasticity can be enhanced respectively. Carbon fibres are manufactured in diameters analogous to glass fibres with diameters ranging from 9 to 17 μm. These fibres wound into larger threads for transportation and further production processes. Further production processes include weaving or braiding into carbon fabrics, cloths and mats analogous to those described for glass that can then be used in actual reinforcement processes. Carbon fibers are a new breed of high-strength materials. Carbon fiber has been described as a fiber containing at least 90% carbon obtained by the controlled pyrolysis of appropriate fibers. The existence of carbon fiber came into being in 1879 when Edison took out a patent for the manufacture of carbon filaments suitable for use in electric lamps [18].

2.4.1. Classification and types

Based on modulus, strength, and final heat treatment temperature, carbon fibers can be classified into the following categories:

  1. Based on carbon fiber properties, carbon fibers can be grouped into:

  • Ultra-high-modulus, type UHM (modulus >450Gpa)

  • High-modulus, type HM (modulus between 350-450Gpa)

  • Intermediate-modulus, type IM (modulus between 200-350Gpa)

  • Low modulus and high-tensile, type HT (modulus < 100Gpa, tensile strength > 3.0Gpa)

  • Super high-tensile, type SHT (tensile strength > 4.5Gpa)

  1. Based on precursor fiber materials, carbon fibers are classified into;

  • PAN-based carbon fibers

  • Pitch-based carbon fibers

  • Mesophase pitch-based carbon fibers

  • Isotropic pitch-based carbon fibers

  • Rayon-based carbon fibers

  • Gas-phase-grown carbon fibers

  1. Based on final heat treatment temperature, carbon fibers are classified into:

  • Type-I, high-heat-treatment carbon fibers (HTT), where final heat treatment temperature should be above 2000°C and can be associated with high-modulus type fiber.

  • Type-II, intermediate-heat-treatment carbon fibers (IHT), where final heat treatment temperature should be around or above 1500 °C and can be associated with high-strength type fiber.

  • Type-III, low-heat-treatment carbon fibers, where final heat treatment temperatures not greater than 1000 °C. These are low modulus and low strength materials [19].

2.4.2. Manufacture

In Textile Terms and Definitions, carbon fiber has been described as a fiber containing at least 90% carbon obtained by the controlled pyrolysis of appropriate fibers. The term "graphite fiber" is used to describe fibers that have carbon in excess of 99%. Large varieties of fibers called precursors are used to produce carbon fibers of different morphologies and different specific characteristics. The most prevalent precursors are polyacrylonitrile (PAN), cellulosic fibers (viscose rayon, cotton), petroleum or coal tar pitch and certain phenolic fibers.

Carbon fibers are manufactured by the controlled pyrolysis of organic precursors in fibrous form. It is a heat treatment of the precursor that removes the oxygen, nitrogen and hydrogen to form carbon fibers. It is well established in carbon fiber literature that the mechanical properties of the carbon fibers are improved by increasing the crystallinity and orientation, and by reducing defects in the fiber. The best way to achieve this is to start with a highly oriented precursor and then maintain the initial high orientation during the process of stabilization and carbonization through tension [18-19].

2.4.2.1. Carbon fibers from polyacrylonitrile (PAN)

There are three successive stages in the conversion of PAN precursor into high-performance carbon fibers. Oxidative stabilization: The polyacrylonitrile precursor is first stretched and simultaneously oxidized in a temperature range of 200-300 °C. This treatment converts thermoplastic PAN to a non-plastic cyclic or ladder compound. Carbonization: After oxidation, the fibers are carbonized at about 1000 °C without tension in an inert atmosphere (normally nitrogen) for a few hours. During this process the non-carbon elements are removed as volatiles to give carbon fibers with a yield of about 50% of the mass of the original PAN. Graphitization: Depending on the type of fiber required, the fibers are treated at temperatures between 1500-3000 °C, which improves the ordering, and orientation of the crystallites in the direction of the fiber axis.

2.4.2.2. Carbon fibers from rayon

a- The conversion of rayon fibers into carbon fibers is three phase process

Stabilization: Stabilization is an oxidative process that occurs through steps. In the first step, between 25-150 °C, there is physical desorption of water. The next step is a dehydration of the cellulosic unit between 150-240 °C. Finally, thermal cleavage of the cyclosidic linkage and scission of ether bonds and some C-C bonds via free radical reaction (240-400 °C) and, thereafter, aromatization takes place.

Carbonization: Between 400 and 700 °C, the carbonaceous residue is converted into a graphite-like layer.

Graphitization: Graphitization is carried out under strain at 700-2700 °C to obtain high modulus fiber through longitudinal orientation of the planes.

b- The carbon fiber fabrication from pitch generally consists of the following four steps:

Pitch preparation: It is an adjustment in the molecular weight, viscosity, and crystal orientation for spinning and further heating.

Spinning and drawing: In this stage, pitch is converted into filaments, with some alignment in the crystallites to achieve the directional characteristics.

Stabilization: In this step, some kind of thermosetting to maintain the filament shape during pyrolysis. The stabilization temperature is between 250 and 400 °C.

Carbonization: The carbonization temperature is between 1000-1500 °C.

2.4.2.3. Carbon fibers in meltblown nonwovens

Carbon fibers made from the spinning of molten pitches are of interest because of the high carbon yield from the precursors and the relatively low cost of the starting materials. Stabilization in air and carbonization in nitrogen can follow the formation of melt-blown pitch webs. Processes have been developed with isotropic pitches and with anisotropic mesophase pitches. The mesophase pitch based and melt blown discontinuous carbon fibers have a peculiar structure. These fibers are characterized in that a large number of small domains, each domain having an average equivalent diameter from 0.03 mm to 1mm and a nearly unidirectional orientation of folded carbon layers, assemble to form a mosaic structure on the cross-section of the carbon fibers. The folded carbon layers of each domain are oriented at an angle to the direction of the folded carbon layers of the neighboring domains on the boundary [20].

2.4.2.4. Carbon fibers from isotropic pitch

The isotropic pitch or pitch-like material, i.e., molten polyvinyl chloride, is melt spun at high strain rates to align the molecules parallel to the fiber axis. The thermoplastic fiber is then rapidly cooled and carefully oxidized at a low temperature (<100 °C). The oxidation process is rather slow, to ensure stabilization of the fiber by cross-linking and rendering it infusible. However, upon carbonization, relaxation of the molecules takes place, producing fibers with no significant preferred orientation. This process is not industrially attractive due to the lengthy oxidation step, and only low-quality carbon fibers with no graphitization are produced. These are used as fillers with various plastics as thermal insulation materials [20].

2.4.2.5. Carbon fibers from anisotropic mesophase pitch

High molecular weight aromatic pitches, mainly anisotropic in nature, are referred to as mesophase pitches. The pitch precursor is thermally treated above 350°C to convert it to mesophase pitch, which contains both isotropic and anisotropic phases. Due to the shear stress occurring during spinning, the mesophase molecules orient parallel to the fiber axis. After spinning, the isotropic part of the pitch is made infusible by thermosetting in air at a temperature below it's softening point. The fiber is then carbonized at temperatures up to 1000 °C. The main advantage of this process is that no tension is required during the stabilization or the graphitization, unlike the case of rayon or PANs precursors [21].

2.4.2.6. Structure

The characterization of carbon fiber microstructure has been mainly been performed by x-ray scattering and electron microscopy techniques. In contrast to graphite, the structure of carbon fiber lacks any three dimensional order. In PAN-based fibers, the linear chain structure is transformed to a planar structure during oxidative stabilization and subsequent carbonization. Basal planes oriented along the fiber axis are formed during the carbonization stage. Wide-angle x-ray data suggests an increase in stack height and orientation of basal planes with an increase in heat treatment temperature. A difference in structure between the sheath and the core was noticed in a fully stabilized fiber. The skin has a high axial preferred orientation and thick crystallite stacking. However, the core shows a lower preferred orientation and a lower crystallite height [22].

2.4.2.7. Properties

In general, it is seen that the higher the tensile strength of the precursor the higher is the tenacity of the carbon fiber. Tensile strength and modulus are significantly improved by carbonization under strain when moderate stabilization is used. X-ray and electron diffraction studies have shown that in high modulus type fibers, the crystallites are arranged around the longitudinal axis of the fiber with layer planes highly oriented parallel to the axis. Overall, the strength of a carbon fiber depends on the type of precursor, the processing conditions, heat treatment temperature and the presence of flaws and defects. With PAN based carbon fibers, the strength increases up to a maximum of 1300 ºC and then gradually decreases. The modulus has been shown to increase with increasing temperature. PAN based fibers typically buckle on compression and form kink bands at the innermost surface of the fiber. However, similar high modulus type pitch-based fibers deform by a shear mechanism with kink bands formed at 45° to the fiber axis. Carbon fibers are very brittle. The layers in the fibers are formed by strong covalent bonds. The sheet-like aggregations allow easy crack propagation. On bending, the fiber fails at very low strain [23].

2.4.2.8. Applications

The two main applications of carbon fibers are in specialized technology, which includes aerospace and nuclear engineering, and in general engineering and transportation, which includes engineering components such as bearings, gears, cams, fan blades and automobile bodies. Recently, some new applications of carbon fibers have been found. Others include: decoration in automotive, marine, general aviation interiors, general entertainment and musical instruments and after-market transportation products. Conductivity in electronics technology provides additional new application [24].

The production of highly effective fibrous carbon adsorbents with low diameter, excluding or minimizing external and intra-diffusion resistance to mass transfer, and therefore, exhibiting high sorption rates is a challenging task. These carbon adsorbents can be converted into a wide variety of textile forms and nonwoven materials. Cheaper and newer versions of carbon fibers are being produced from new raw materials. Newer applications are also being developed for protective clothing (used in various chemical industries for work in extremely hostile environments), electromagnetic shielding and various other novel applications. The use of carbon fibers in Nonwovens is in a new possible application for high temperature fire-retardant insulation (eg: furnace material) [25].

2.5. Aramid-definition

Aliphatic polyamides are macromolecules whose structural units are characteristically interlinked by the amide linkage -NH-CO-. The nature of the structural unit constitutes a basis for classification. Aliphatic polyamides with structural units derived predominantly from aliphatic monomers are members of the generic class of nylons, whereas aromatic polyamides in which at least 85% of the amide linkages are directly adjacent to aromatic structures have been designated aramids. The U.S. Federal Trade Commission defines nylon fibers as ‘‘a manufactured fiber in which the fiber forming substance is a long chain synthetic polyamide in which less than 85% of the amide linkages (-CO-NH-) are attached directly to two aliphatic groups.’’ Polyamides that contain recurring amide groups as integral parts of the polymer backbone have been classified as condensation polymers regardless of the principal mechanisms entailed in the polymerization process. Though many reactions suitable for polyamide formation are known, commercially important nylons are obtained by processes related to either of two basic approaches: one entails the polycondensation of difunctional monomers utilizing either amino acids or stoichiometric pairs of dicarboxylic acids and diamines, and the other entails the ring-opening polymerization of lactams. The polyamides formed from diacids and diamines are generally described to be of the AABB format, whereas those derived from either amino acids or lactams are of the AB format.

The structure of polyamide fibers is defined by both chemical and physical parameters. The chemical parameters are related mainly to the constitution of the polyamide molecule and are concerned primarily with its monomeric units, end-groups, and molecular weight. The physical parameters are related essentially to chain conformation, orientation of both polymer molecule segments and aggregates, and to crystallinity [26]. This characteristic for single-chain aliphatic polyamides is determined by the structure of the monomeric units and the nature of end groups of the polymer molecules. The most important structural parameter of the noncrystalline (amorphous) phase is the glass transition temperature (Tg) since it has a considerable effect on both processing and properties of the polyamide fibers. It relates to a type of a glass–rubber transition and is defined as the temperature, or temperature range, at which mobility of chain segments or structural units commences. Thus it is a function of the chemical structure; in case of the linear aliphatic polyamides, it is a function of the number of CH2 units (mean spacing) between the amide groups. As the number of CH2 unit’s increases, Tg decreases. Although Tg is further affected by the nature of the crystalline phase, orientation, and molecular weight, it is associated only with what may be considered the amorphous phase.

Any process affecting this phase exerts a corresponding effect on the glass transition temperature. This is particularly evident in its response to the concentration of water absorbed in polyamides. An increase in water content results in a steady decrease of Tg toward a limiting value. This phenomenon may be explained by a mechanism that entails successive replacement of intercatenary hydrogen bonds in the amorphous phase with water. It may involve a sorption mechanism, according to which 3 mol of water interact with two neighboring amide groups [27].

The properties of aromatic polyamides differ significantly from those of their aliphatic counterparts. This led the U.S. Federal Trade Commission to adopt the term ‘‘aramid’’ to designate fibers of the aromatic polyamide type in which at least 85% of the amide linkages are attached directly to two aromatic rings.

The search for materials with very good thermal properties was the original reason for research into aromatic polyamides. Bond dissociation energies of C-C and C-N bonds in aromatic polyamides are ~20% higher than those in aliphatic polyamides. This is the reason why the decomposition temperature of poly(m-phenylene isophthalamide) MPDI exceeds 450 ºC. Conjugation between the amide group and the aromatic ring in poly(p-phenylene terephthalamide) “PPTA” increases chain rigidity as well as the decomposition temperature, which exceeds 550 ºC.

Obviously, hydrogen bonding and chain rigidity of these polymers translates to very high glass transition temperatures. Using low-molecular-weight polymers, Aharoni [19] measured glass transition temperatures of 272 ºC for MPDI and over 295 ºC for PPTA (which in this case had low crystallinity). Others have reported values as high as 4928 ºC. In most cases the measurement of Tg is difficult because PPTA is essentially 100% crystalline. As one would expect, these values are not strongly dependent on the molecular weight of the polymer above a DP of ~10 [22].

The same structural characteristics that are responsible for the excellent thermal properties of these materials are responsible for their limited solubility as well as good chemical resistance. PPTA is soluble only in strong acids like H2SO4, HF, and methanesulfonic acid. Preparation of this polymer via solution polymerization in amide solvents is accompanied by polymer precipitation. As expected, based on its structure, MPDI is easier to solubilize then PPTA. It is soluble in neat amide solvents like N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc), but adding salts like CaCl2 or LiCl significantly enhances its solubility. The significant rigidity of the PPTA chain (as discussed above) leads to the formation of anisotropic solutions when the solvent is good enough to reach critical minimum solids concentration. The implications of this are discussed in greater detail later in this chapter. It is well known that chemical properties differ significantly between crystalline and noncrystalline materials of the same composition. In general, aramids have very good chemical resistance. Obviously, the amide bond is subject to a hydrolytic attack by acids and bases. Exposure to very strong oxidizing agents results in a significant strength loss of these fibers. In addition to crystallinity, structure consolidation affects the rate of degradation of these materials. The hydrophilicity of the amide group leads to a significant absorption of water by all aramids. While the chemistry is the driving factor, fiber structure also plays a very important role; for example, Kevlar 29 absorbs ~7% water, Kevlar 49~4%, and Kevlar 149 only 1%. Fukuda explored the relationship between fiber crystallinity and equilibrium moisture in great detail. Because of their aromatic character, aramids absorb UV light, which results in an oxidative color change. Substantial exposure can lead to the loss of yarn tensile properties. UV absorption by p-aramids is more pronounced than with m-aramids. In this case a self-screening phenomenon is observed, which makes thin structures more susceptible to degradation than thick ones. Very frequently p-aramids are covered with another material in the final application to protect them. The high degree of aromaticity of these materials also provides significant flame resistance. All commercial aramids have a limited oxygen index in the range of 28-32%, which compares with ~20% for aliphatic polyamides.

Typical properties of commercial aramid fibers are while yarns of m-aramids have tensile properties that are no greater than those of aliphatic polyamides, they do retain useful mechanical properties at significantly higher temperatures. The high glass transition temperature leads to low (less than 1%) shrinkage at temperatures below 250 ºC. In general, mechanical properties of m-aramid fibers are developed on drawing. This process produces fibers with a high degree of morphological homogeneity, which leads to very good fatigue properties. The mechanical properties of p-aramid fibers have been the subject of much study. This is because these fibers were the first examples of organic materials with a very high level of both strength and stiffness. These materials are practical confirmation that nearly perfect orientation and full chain extension are required to achieve mechanical properties approaching those predicted for chemical bonds. In general, the mechanical properties reflect a significant anisotropy of these fibers-covalent bonds in the direction of the fiber axis with hydrogen bonding and van der Waals forces in the lateral direction [26].

Aramid-based reinforcement has been viewed as a more specialty product for applications requiring high modulus and where the potential for electrical conductivity would preclude the use of carbon; for example, aramid sheet is used for all tunnel repairs. Product forms include dry fabrics or unidirectional sheets as well as pre-cured strips or bars. Fabrics or sheets are applied to a concrete surface that has been smoothed (by grinding or blasting) and wetted with a resin (usually epoxy). The composite materials used for concrete infrastructure repair that was initiated in the mid 1980s. After air pockets are removed using rollers or flat, flexible squeegees, a second resin coat might be applied. Reinforcement of concrete structures is important in earthquake prone areas, although steel plate is the primary material used to reinforce and repair concrete structures, higher priced fiber-based sheet structures offer advantages for small sites where ease of handling and corrosion resistance are important. The high strength, modulus, and damage tolerance of aramid-reinforced sheets makes the fiber especially suitable for protecting structures prone to seismic activity. The use of aramid sheet also simplifies the application process. Sheets are light in weight and can be easily handled without heavy machinery and can be applied in confined working spaces. Sheets are also flexible, so surface smoothing and corner rounding of columns are less critical than for carbon fiber sheets [28].