Peptides: Understanding & Buying from a Pharmacy - All U Health

07 Jul.,2025

 

Peptides: Understanding & Buying from a Pharmacy - All U Health

What Are Peptides?

To understand peptides & their function you must first understand the role of amino acids. Amino acids are organic compounds that combine to form proteins. Peptides are short strains of amino acids that make up larger proteins, like collagen. While some peptides are naturally occurring, scientists have created certain peptides to enhance our bodies natural processes to help treat issues we may have. In short, peptides can often be the key to triggering responses in the body to improve both our health & our appearance.

If you are looking for more details, kindly visit our website.

Peptides are part of the essential building blocks of life. They are microscopic molecules entailing usually somewhere between 2-20 linked short chain amino acids. These chains combine together to build larger chains of amino acids called proteins. All processes are built on a foundation of amino acids. Some amino acids are produced within the body and some must be acquired by food and/or supplements.

Peptides Research

Peptides are vital for research in both the medical & pharmaceutical fields. With the growing demand in neuroscience; cancer therapies; immunology studies; drug delivery systems; tissue repair; and allowing the body to grow, digest food, build muscle, & strengthen the immune system, we have much more to learn about them.

Peptide development has made great progress over the past few years thanks to new production & modification with analytic technologies. These technologies have allowed for the changes using both chemical & biological methods, together with novel design & delivery strategies, which have helped to overcome the inherent drawbacks of peptides, have allowed the continued advancement of this field. The first therapeutic peptide identified & produced was insulin in . Since then, there have been thousands of peptides identified, many of which have failed in production due to stability but many that have been brought to market.

Peptides commonly act as hormones, growth factors, neurotransmitters, ion channel ligands, or anti-infective agents. They bind to cell surface receptors & trigger intracellular effects with high affinity and specificity, with a similar mode of action to biologics, including therapeutic proteins & antibodies. This is a critical understanding as peptides do not replace what is lacking in the body, they facilitate the natural production from the body.

With peptides designed to facilitate the body’s production, it becomes critical to ensure the production of the peptide is controlled AND tested. The control of production & manufacturing of these peptides should be only done in pharmacies that are approved by agencies. These agencies include the FDA, State Boards, & independent organizations that ensure protocols, safety, sterility, & testing is in place. These inspections give assurance to patients that the medications are safe & the integrity are for use in humans.

Peptides made at controlled pharmacies are considered Medications & will be prescribed to you like any other medication. The peptides will come with approved labeling that includes such identifiers as pharmacy name, patient identification, medication name, dosage, & expiration date. This is all to be compliant with FDA regulations & to ensure the safety & effectiveness of the medications.

Following the publication of Tony Robbins book, Life Force, where a long list of peptides is provided, even some that are not allowed to be prescribed in the US any longer, some patients went online & started looking for places to purchase peptides. They found a few companies that were selling these peptides at a very cheap price but there were no recommendations on how to mix the products, dosing instructions, or any other information regarding the medications. We had several people calling asking how to mix them or what the dose is they should be administering. Unfortunately, for medicolegal reasons, we declined to give any information but offered them an appointment with our medical provider to go over all their questions & to order legit peptides from an approved pharmacy & explained we cannot give any directions or manage protocols for research chemicals that might be prohibited for human consumption.

If ordering online from a peptide website, “research companies” (not pharmacies), you will quickly realize on the vial labeling that there will be statements such as: “NOT FOR HUMAN CONSUMPTION”, “FOR LABORATORY USE ONLY”, ”RESEARCH PURPOSES ONLY”, or “FOR RESEARCH USE ONLY” clearly written on the bottle. This designation is to ensure the substance, which is not manufactured in a regulated pharmacy, is NOT subject to the laws of medication. These peptides sole purpose is for scientific research purposes. They are often synthesized in laboratories to mimic specific biological processes or to study the effects of certain substances on cells or organisms, not in humans.

These laboratories are not set up for the rigorous testing and/or sterility of the substance that is labeled. In addition, there are no dosing instructions on how the substance should be administered, which is vital to understand how much you should be taking & the frequency of it. Research companies have no oversight of their supply chain and no oversight of their manufacturing facility. Their compounding operations are not contained in a clean room. Clean rooms are extremely expensive and require frequent maintenance. The board of pharmacy requires frequent validation studies to ensure the airflow is correct, it is inspected annually, and cleanings are done on a regular basis.

While some peptides may have performance-enhancing effects, using peptides for performance enhancement without proper medical supervision or authorization is illegal & can have serious health consequences. Peptides should only be used for their intended purposes in approved research settings.

It is important to note that research peptides are not intended for human consumption, while performance-enhancing drugs (PEDs) aim to enhance performance & are subject to strict regulations due to health risks. Legal use requires medical supervision AND authorization. They are labeled “for research only” because their safety & efficacy in humans have not been thoroughly tested AND approved by regulatory authorities such as the Food and Drug Administration (FDA). Therefore, using research only peptides for any purpose other than for scientific research is considered illegal.

There are websites and clinics that will offer “prefilled” syringes of peptides and/or medications. This is typically a red flag as these medications are not patient specific AND should be labeled per the FDA requirements of pharmacy name, patients name, medication, dosing instructions, & expiration date, at a very minimum. Adherence to guidelines & regulations, including ethical approval, informed consent, record-keeping, safety protocols, licensing, & adverse event reporting, is crucial for legal compliance.

Research peptides themselves are not illegal, as they are essential tools in scientific research. However, their use outside of approved research settings, such as for personal consumption or performance enhancement, can be illegal & is subject to regulatory scrutiny. Research peptide legality varies globally, with countries like the United State regulating peptides under the Controlled Substances Act, the EU regulating through various directives, Australia through the Therapeutic Goods Administration, & Canada through Health Canada.

Leave it to the medical professionals at facility such as All U Health to ensure you are getting the best therapy, peptides, & medications from registered pharmacies, along with the proper follow-up care for optimal health. We will conduct a medical assessment prior to prescribing peptides or medications to any patient to ensure safety. Some peptides & medications may have side effects or interactions with other substances, while others may pose risks if used incorrectly or without proper medical supervision. It is important to consult with a healthcare provider before using any peptides or medications.

All U Health is an ambitious clinic leading the peptide and hormone industry while dedicated to helping our guest optimize themselves for peak performance & wellness. All U Health located in the Scottsdale/Phoenix AZ area & offer both in-person & virtual consultations to our guests. Our expansive knowledge & expertise on wellness & utilizing the latest science & biology helps our guests receive the best treatments for them. We prescribe based on individual needs in order to optimize everyone to their fullest potential. Our dedication & commitment is to provide top-notch services that enhance the overall well-being & vitality at any age.

Peptide Therapeutics: Their Power and Promise | PurePep Blog

Thousands of peptides are produced in the body to perform a wide range of functions. This makes peptides a promising route toward well-tolerated and effective treatments. Therapeutic peptides are now being used to treat a range of conditions, including metabolic diseases, cancer, cardiovascular and infectious diseases, pain and hematological diseases. This has been the result of considerable efforts in R&D, including the development of advanced methods for solid-phase peptide synthesis to prepare customized peptides with improved function, and greater resistance to degradation.

Peptides provide diversity in a dynamic pipeline

Therapeutic peptides have many advantages, including high activity, great chemical and biological diversity, and low toxicity. In addition, thanks to advances in solid-phase peptide synthesis that enable efficient synthesis with high purity, peptides are relatively easy to produce at low cost compared to protein-based biologicals. These advantages are driving a dynamic peptide drug discovery process, based on the efforts of hundreds of academic groups and the formation of peptide therapeutics companies.

In the last five years (–), the U.S. Food Drug Administration (FDA) has authorized 15 peptides or peptide-containing molecules of a total of 208 new drugs (150 new chemical entities and 58 biologics; 1). Peptide-based drug candidates include a range of structures, from small to large, including cyclic or branched constructs, conjugation to antibodies, or incorporation of radionuclides.

If you want to learn more, please visit our website NUPTEC.

Three basic types of therapeutic peptide

Therapeutic peptides can be divided into native, analog, and heterologous peptides. Analog peptides are the majority of peptides in clinical trials and have adapted sequences to improve therapeutic potential. Heterologous peptides are not related to native sequences and are discovered by screening libraries of naturally produced compounds of other species, by rational and computational drug design, or by phage display. Such peptides may have longer half-lives and novel functions, but there is also the increased risk of side-effects.

A broad range of applications

Most naturally occurring peptides bind to cell surface receptors to trigger intracellular responses, and function as hormones, neurotransmitters, growth factors, ion channel ligands, and anti-infectives. Therapeutic peptides can function simply, in peptide replacement, such as insulin, or be used to expedite the delivery of cytotoxic substances or imaging agents into specific cells.

Therapeutic peptides can also function as antivirals, targeting HIV, influenza, or hepatitis, generally by inhibiting the replication cycle, and this ability has come into particular focus in the intensive search for therapeutic solutions during the ongoing COVID-19 pandemic. The SARS-CoV-2 virus invades host cells by binding the human angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface through its viral spike protein. The interfaces involved in these protein-protein interactions (PPIs) are dynamic and often planar, which puts special demands on the design of drugs that can ‘stick’ to the flat surfaces of the druggable target protein. The most promising PPI disruptors are peptides, which are better at disrupting the broad surface interactions involved than small-molecule inhibitors, and various groups are therefore looking into how peptides can be used to disrupt the SARS-CoV-2/ACE2 interaction (2).

Why are peptides used as therapeutics?

The advantages of peptides as therapeutics, and also as vaccines are many:

  • Fully-defined composition

  • Large-scale production is affordable

  • Water-soluble, stable in storage, can be freeze-dried

  • No biological contamination

  • Minimal allergic and autoimmune response

  • Can be customized as multipurpose therapeutic

Examples of therapeutic peptides

Spider venom peptides for non-opioid pain relief

Pain research took a major step forward when it was discovered that a voltage-gated sodium channel (NaV1.7) plays a major role in human pain perception, sparking the search for novel analgesics that could act by blocking NaV1.7. The challenge has been to identify inhibitors that are highly selective for NaV1.7, as only four of the nine voltage-gated NaV channel sub-types are involved in pain signaling while others have critical roles in heart and muscle function. The search for new analgesics has led to the discovery of peptides in spider venom that bind to voltage-gated ion channels involved in pain. A research group headed by Christina Schroeder and based at the University of Queensland, Australia has used SPPS to prepare variants of these gating modifier toxins (GMTs) on model membranes and investigate how individual peptides interact with the channels and surrounding membranes to achieve selective channel inhibition 3, 4.

Figure 1. The hydrophobic patch and surrounding cationic ring in spider-venom GMTs promotes NaV channel promiscuity. A representative GMT is shown with hydrophobic patch (green), positively charged residues (blue), and anionic amino acid residues (red). A detail from Figure 10, Agwa et al, , reference 3.

Cyclotide scaffolds stabilize epitopes

The poor proteolytic stability of natural, linear peptides limits their therapeutic potential, and one way of increasing stability can be to exploit cyclotides, which are cyclic peptides that resist proteolysis due to their highly constrained structure. A research group based at the University of Queensland, Australia, and also including Christina Schroeder, has shown that non-immunogenic cyclotides linked to VHH7, a nanobody that targets murine class II MHC molecules, can be a simple approach to targeting antigen-presenting cells (APCs5). Cyclotides may therefore be valuable scaffolds for the construction of epitopes that need to be presented in a constrained form that is also resistant to proteolysis.

Figure 2. Cyclotides can be valuable scaffolds that enable epitopes to be presented in a constrained form that is resistant to proteolysis. Figure 1a, Kwon et al, , reference 5.

Epigenetic approaches to treat blood cancer

Epigenetic changes are thought to be involved in many, perhaps all cancers, which makes methylation modulators promising drug candidates. Since the first peptide-derived epigenetic drug (romidepsin) was approved for the treatment of different forms of T cell lymphoma in and , research has continued at an ever-increasing pace to find new ways to modulate epigenetics in cancer therapy. For example, a research team headed by Hao Jiang, based at the Department of Biochemistry and Molecular Genetics, University of Alabama, USA, has focused on the chromatin modulator DPY30, which facilitates histone H3K4 methylation by directly binding to ASH2L and plays an important role in hematologic malignancies6. The team used a peptide to disrupt the binding of DPY30 to ASH2L in order to investigate the domain on DPY30 that regulates cancer growth. Their results demonstrate the potential for targeting DPY30/ASHL2 binding to treat hematologic malignancy, and the next step could be the development of even more effective molecules to target DPY30, based on peptidomimetics and small molecule inhibitors with better pharmacological properties.

The need to synthesize complex peptides

While peptides have many advantages as therapeutics, the examples above illustrate the need to ensure that peptides are resistant to degradation and can maintain their structure. Achieving this often requires modifications that involve the synthesis of so-called ‘complex peptides’.

As we noted in a previous blog post on peptide-based vaccines , peptides can be complex in many ways:

  • Longer peptides, >30 amino acids, are a challenge to synthesize, for example chemokines or histones.

  • Highly hydrophobic peptides such as beta-amyloids involved in Alzheimer’s disease and extensively used in research.

  • Cyclic peptides, in efforts to improve the rigidity, stability and resistance to degradation of therapeutic peptides. These are stapled, disulfide-bridged, bicyclic, or cyclized head-to-tail. Cyclotides, for example, are stable to proteolytic attack and have high thermal stability due to their highly constrained structure created by a head-to-tail cyclic backbone and three disulfide bonds that form a cystine-knotted core.

  • Peptides can be branched, include side-chain modifications, phospho-peptides or be cysteine rich.

  • Post-translational modifications (PTMs) of native peptides may need to be mimicked to achieve maximum effect.

  • The need to maintain stereochemistry (risk of racemization during synthesis).

Meeting these challenges means using a peptide synthesizer that can handle complex chemistries while minimizing cross-contamination, dead volumes, and reagent carryover. This is especially important for the synthesis of long sequences, in which even small amounts of impurities, side products, and incomplete reactions over many cycles can drastically reduce the final purity and yield of desired peptides. Aggregation, secondary structure, steric hindrance, and conformational effects can still pose challenges in synthesis, and real-time monitoring optimizes reaction times to ensure complete deprotection.

Conclusions

We have come a long way since insulin was first extracted a hundred years ago and later used in replacement therapy to treat diabetes. The many advantages of peptides as therapeutics are now being realized through solid-phase peptide synthesis that can generate complex molecules with fine-tuned functionality and resistance to degradation. You can find out more about how the synthesis challenges posed by complex peptides can be met by downloading the White Paper ‘Meeting the challenge of synthesizing complex therapeutic peptides’.

References:

1 Editorial - Peptide Therapeutics 2.0. de la Torre, BG and Albericio, F. Molecules , 25, ; doi:10./molecules

2 Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. VanPatten, S et al. Future medicinal chemistry. July DOI: 10./fmc--

3 Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Agwa AJ et al, J Biol Chem. Jun 8;293(23):-. doi: 10./jbc.RA118.. Epub Apr 27.

4 Webinar: Venom peptides: Rethinking voltage-gated sodium channel inhibition, Christina Schroeder

5 Targeted delivery of cyclotides via conjugation to a nanobody. Kwon S et al. ACS Chem. Biol., , 13 (10), –. DOI: 10./acschembio.8b

Contact us to discuss your requirements of Peptide Biologics. Our experienced sales team can help you identify the options that best suit your needs.